Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38346220

RESUMO

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for lipopolysaccharide (LPS)-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by bronchoalveolar lavage fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. Interestingly, BALF lactate is increased in septic patients compared with healthy controls, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.

2.
J Intensive Care Med ; 39(4): 313-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724016

RESUMO

Purpose: We sought to evaluate critically ill patients with delirium to evaluate inflammatory cytokine production and delirium progression and the role of antipsychotics. Materials and Methods: Adult critically ill patients with confirmed delirium according to a positive CAM-ICU score were included and IL-6 and IL-8 levels were trended for 24 h in this single-center, prospective, observational cohort study. Results: A total of 23 patients were consented and had blood samples drawn for inclusion. There was no difference in IL-6 and IL-8 levels at baseline, 4 to 8 h, and 22 to 28 h after enrollment when comparing patients based on antipsychotic exposure. We identified 2 patient clusters based on age, APACHE III, need for mechanical ventilation, and concomitant infection. In cluster 1, 5 (33.3%) patients received antipsychotics versus 5 (62.5%) patients in cluster 2 (P = .18). Patients in cluster 1 had more co-inflammatory conditions (P < .0001), yet numerically lower baseline IL-6 (P = .18) and IL-8 levels (P = .80) compared to cluster 2. Patients in cluster 1 had a greater median number of delirium-free days compared to cluster 2 (17.0 vs 6.0 days; P = .05). Conclusions: In critically ill patients with delirium, IL-6 and IL-8 levels were variable and antipsychotics were not associated with improvements in delirium or inflammatory markers.


Assuntos
Antipsicóticos , Delírio , Adulto , Humanos , Antipsicóticos/uso terapêutico , Estudos Prospectivos , Interleucina-8 , Estado Terminal/terapia , Interleucina-6/uso terapêutico , Delírio/tratamento farmacológico , Unidades de Terapia Intensiva
3.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
4.
Crit Care Explor ; 5(11): e1008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020848

RESUMO

OBJECTIVES: Diagnosis of pneumonia is challenging in critically ill, intubated patients due to limited diagnostic modalities. Endotracheal aspirate (EA) cultures are standard of care in many ICUs; however, frequent EA contamination leads to unnecessary antibiotic use. Nonbronchoscopic bronchoalveolar lavage (NBBL) obtains sterile, alveolar cultures, avoiding contamination. However, paired NBBL and EA sampling in the setting of a lack of gold standard for airway culture is a novel approach to improve culture accuracy and limit antibiotic use in the critically ill patients. DESIGN: We designed a pilot study to test respiratory culture accuracy between EA and NBBL. Adult, intubated patients with suspected pneumonia received concurrent EA and NBBL cultures by registered respiratory therapists. Respiratory culture microbiology, cell counts, and antibiotic prescribing practices were examined. SETTING: We performed a prospective pilot study at the Cleveland Clinic Main Campus Medical ICU in Cleveland, Ohio for 22 months from May 2021 through March 2023. PATIENTS OR SUBJECTS: Three hundred forty mechanically ventilated patients with suspected pneumonia were screened. Two hundred fifty-seven patients were excluded for severe hypoxia (Fio2 ≥ 80% or positive end-expiratory pressure ≥ 12 cm H2O), coagulopathy, platelets less than 50,000, hemodynamic instability as determined by the treating team, and COVID-19 infection to prevent aerosolization of the virus. INTERVENTIONS: All 83 eligible patients were enrolled and underwent concurrent EA and NBBL. MEASUREMENTS AND MAIN RESULTS: More EA cultures (42.17%) were positive than concurrent NBBL cultures (26.51%, p = 0.049), indicating EA contamination. The odds of EA contamination increased by eight-fold 24 hours after intubation. EA was also more likely to be contaminated with oral flora when compared with NBBL cultures. There was a trend toward decreased antibiotic use in patients with positive EA cultures if paired with a negative NBBL culture. Alveolar immune cell populations were recovered from NBBL samples, indicating successful alveolar sampling. There were no major complications from NBBL. CONCLUSIONS: NBBL is more accurate than EA for respiratory cultures in critically ill, intubated patients. NBBL provides a safe and effective technique to sample the alveolar space for both clinical and research purposes.

5.
J Intensive Care Med ; 38(3): 273-279, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36062611

RESUMO

BACKGROUND: In septic shock, vasopressors aim to improve tissue perfusion and prevent persistent organ dysfunction, a characteristic of chronic critical illness (CCI). Adjunctive vasopressin is often used to decrease catecholamine dosage, but the association of vasopressin response with subsequent patient outcomes is unclear. We hypothesized vasopressin response is associated with favorable clinical trajectory. METHODS: We included patients with septic shock receiving vasopressin as a catecholamine adjunct in this retrospective cohort study. We defined vasopressin response as a lowering of the catecholamine dose required to maintain mean arterial pressure ≥65 mm Hg, 6 h after vasopressin initiation. Clinical trajectories were adjudicated as early death (ED; death before day 14), CCI (ICU stay ≥14 days with persistent organ dysfunction), or rapid recovery (RR; not meeting ED or CCI criteria). Trajectories were placed on an ordinal scale with ED the worst outcome, CCI next, and RR the best outcome. The association of vasopressin response with clinical trajectory was assessed with multivariable ordinal logistic regression. RESULTS: In total 938 patients were included; 426 (45.4%) were vasopressin responders. The most frequent trajectory was ED (49.8%), 29.7% developed CCI, and 20.5% had rapid recovery. In survivors to ICU day 14 (those without ED), 59.2% had CCI and 40.8% experienced RR. Compared with vasopressin non-responders, vasopressin responders less frequently experienced ED (42.5% vs. 55.9%) and more frequently experienced RR (24.6% vs. 17.0%; P < 0.01). After controlling for confounders, vasopressin response was independently associated with higher odds of developing a better clinical trajectory (OR 1.63; 95% CI 1.26-2.10). Medical patients most frequently developed ED and survivors more commonly developed CCI than RR; surgical patients developed the three trajectories with similar frequency (P < 0.01). CONCLUSIONS: Vasopressin responsive status was associated with improved clinical trajectory in septic shock patients. Early vasopressin response is a potential novel prognostic marker for short-term clinical trajectory.


Assuntos
Choque Séptico , Humanos , Choque Séptico/tratamento farmacológico , Estudos Retrospectivos , Insuficiência de Múltiplos Órgãos , Vasopressinas/uso terapêutico , Vasoconstritores/uso terapêutico , Catecolaminas , Estado Terminal
6.
J Physiol ; 601(3): 567-606, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533558

RESUMO

Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Sarcopenia , Humanos , Camundongos , Animais , Sarcopenia/metabolismo , Proteostase , Músculo Esquelético/metabolismo , Hipóxia/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações
8.
J Invest Dermatol ; 142(8): 2159-2172.e9, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090950

RESUMO

TNF-α, a proinflammatory cytokine, is a crucial mediator of psoriasis pathogenesis. TNF-α functions by activating TNFR1 and TNFR2. Anti-TNF drugs that neutralize TNF-α, thus blocking the activation of TNFR1 and TNFR2, have been proven highly therapeutic in psoriatic diseases. TNF-α also plays an important role in host defense; thus, anti-TNF therapy can cause potentially serious adverse effects, including opportunistic infections and latent tuberculosis reactivation. These adverse effects are attributed to TNFR1 inactivation. Therefore, understanding the relative contributions of TNFR1 and TNFR2 has clinical implications in mitigating psoriasis versus global TNF-α blockade. We found a significant reduction in psoriasis lesions as measured by epidermal hyperplasia, characteristic gross skin lesion, and IL-23 or IL-17A levels in Tnfr2-knockout but not in Tnfr1-knockout mice in the imiquimod psoriasis model. Furthermore, imiquimod-mediated increase in the myeloid dendritic cells, TNF/inducible nitric oxide synthase‒producing dendritic cells, and IL-23 expression in the draining lymph nodes were dependent on TNFR2 but not on TNFR1. Together, our results support that psoriatic inflammation is not dependent on TNFR1 activity but is driven by a TNFR2-dependent IL-23/IL-17 pathway activation. Thus, targeting the TNFR2 pathway may emerge as a potential next-generation therapeutic approach for psoriatic diseases.


Assuntos
Psoríase , Receptores Tipo II do Fator de Necrose Tumoral , Animais , Células Dendríticas/metabolismo , Imiquimode , Inflamação/patologia , Interleucina-17 , Interleucina-23 , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Immunol ; 12: 767319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795674

RESUMO

The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.


Assuntos
Imunidade Inata/imunologia , Macrófagos/imunologia , Mecanotransdução Celular/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Canais Iônicos/imunologia , Canais Iônicos/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Canais de Cátion TRPV/imunologia , Canais de Cátion TRPV/metabolismo
10.
BMJ ; 372: n436, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692022

RESUMO

Severe covid-19 pneumonia has posed critical challenges for the research and medical communities. Older age, male sex, and comorbidities increase the risk for severe disease. For people hospitalized with covid-19, 15-30% will go on to develop covid-19 associated acute respiratory distress syndrome (CARDS). Autopsy studies of patients who died of severe SARS CoV-2 infection reveal presence of diffuse alveolar damage consistent with ARDS but with a higher thrombus burden in pulmonary capillaries. When used appropriately, high flow nasal cannula (HFNC) may allow CARDS patients to avoid intubation, and does not increase risk for disease transmission. During invasive mechanical ventilation, low tidal volume ventilation and positive end expiratory pressure (PEEP) titration to optimize oxygenation are recommended. Dexamethasone treatment improves mortality for the treatment of severe and critical covid-19, while remdesivir may have modest benefit in time to recovery in patients with severe disease but shows no statistically significant benefit in mortality or other clinical outcomes. Covid-19 survivors, especially patients with ARDS, are at high risk for long term physical and mental impairments, and an interdisciplinary approach is essential for critical illness recovery.


Assuntos
COVID-19/complicações , COVID-19/terapia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , COVID-19/diagnóstico , Humanos , Respiração Artificial , Síndrome do Desconforto Respiratório/diagnóstico
11.
Front Immunol ; 11: 1211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676078

RESUMO

Ion channels/pumps are essential regulators of innate immune cell function. Macrophages have been increasingly recognized to have phenotypic plasticity and location-specific functions in the lung. Transient receptor potential vanilloid 4 (TRPV4) function in lung injury has been shown to be stimulus- and cell-type specific. In the current review, we discuss the importance of TRPV4 in macrophages and its role in phagocytosis and cytokine secretion in acute lung injury/acute respiratory distress syndrome (ARDS). Furthermore, TRPV4 controls a MAPK molecular switch from predominately c-Jun N-terminal kinase, JNK activation, to that of p38 activation, that mediates phagocytosis and cytokine secretion in a matrix stiffness-dependent manner. Expanding knowledge regarding the downstream mechanisms by which TRPV4 acts to tailor macrophage function in pulmonary inflammatory diseases will allow for formulation of novel therapeutics.


Assuntos
Suscetibilidade a Doenças , Imunidade Inata , Imunomodulação , Pneumonia/etiologia , Pneumonia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Plasticidade Celular , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Pneumonia/patologia , Transdução de Sinais , Canais de Cátion TRPV/genética
12.
J Immunol ; 204(5): 1310-1321, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969384

RESUMO

Mechanical cell-matrix interactions can drive the innate immune responses to infection; however, the molecular underpinnings of these responses remain elusive. This study was undertaken to understand the molecular mechanism by which the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), alters the in vivo response to lung infection. For the first time, to our knowledge, we show that TRPV4 protects the lung from injury upon intratracheal Pseudomonas aeruginosa in mice. TRPV4 functions to enhance macrophage bacterial clearance and downregulate proinflammatory cytokine secretion. TRPV4 mediates these effects through a novel mechanism of molecular switching of LPS signaling from predominant activation of the MAPK, JNK, to that of p38. This is accomplished through the activation of the master regulator of inflammation, dual-specificity phosphatase 1. Further, TRPV4's modulation of the LPS signal is mechanosensitive in that both upstream activation of p38 and its downstream biological consequences depend on pathophysiological range extracellular matrix stiffness. We further show the importance of TRPV4 on LPS-induced activation of macrophages from healthy human controls. These data are the first, to our knowledge, to demonstrate new roles for macrophage TRPV4 in regulating innate immunity in a mechanosensitive manner through the modulation of dual-specificity phosphatase 1 expression to mediate MAPK activation switching.


Assuntos
Pulmão , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/imunologia , Pneumonia Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa/imunologia , Canais de Cátion TRPV/imunologia , Animais , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/patologia , Camundongos , Camundongos Mutantes , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Canais de Cátion TRPV/genética
14.
Pharmacotherapy ; 40(1): 33-39, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705703

RESUMO

INTRODUCTION: Positive hemodynamic response to vasopressin after 6 hours of infusion was independently associated with lower mortality in a previous retrospective study of patients with septic shock. However, factors previously associated with higher plasma vasopressin concentration were not associated with response, and the relationship between plasma vasopressin concentration and hemodynamic response has not been evaluated. OBJECTIVES: This cross-sectional study compared plasma vasopressin concentrations in hemodynamic responders and nonresponders to vasopressin in patients with septic shock to evaluate plasma vasopressin concentration as a therapeutic target for hemodynamic response to vasopressin. METHODS: Adult patients with septic shock were included if they were treated with fixed-dose vasopressin as an adjunct to catecholamines for at least 3 hours. Patients were assigned to groups based on vasopressin response. RESULTS: Ten hemodynamic responders to vasopressin and eight nonresponders were included. Blood samples for plasma vasopressin concentration were collected 3-6 hours after vasopressin initiation. Baseline characteristics were similar between groups. No difference was detected in plasma vasopressin concentrations between hemodynamic responders and nonresponders (median 88.6 pg/ml [interquartile range (IQR) 84.4-107.5 pg/ml] vs 89.9 pg/ml [IQR 67.5-157.4 pg/ml], p=0.79, respectively). We also did not detect a difference between groups after correcting for vasopressin dose; median vasopressin plasma concentration per 0.01 units/minute of vasopressin infusion for responders was 25.9 pg/ml (IQR 21.8-31.8 pg/ml) versus 29.5 pg/ml (IQR 23.0-57.5 pg/ml, p=0.48) for nonresponders. No difference in clinical outcomes was detected between groups. The findings were robust to multiple sensitivity analyses. CONCLUSIONS: This study does not support the use of plasma vasopressin concentrations as a therapeutic target to predict hemodynamic response to exogenous vasopressin in septic shock.


Assuntos
Choque Séptico/tratamento farmacológico , Vasoconstritores/farmacocinética , Vasopressinas/farmacocinética , Estudos de Casos e Controles , Estudos Transversais , Feminino , Hemodinâmica , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Choque Séptico/sangue , Choque Séptico/mortalidade , Vasoconstritores/administração & dosagem , Vasoconstritores/uso terapêutico , Vasopressinas/administração & dosagem , Vasopressinas/uso terapêutico
15.
Sci Signal ; 12(607)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719171

RESUMO

Myofibroblasts are key contributors to pathological fibrotic conditions of several major organs. The transdifferentiation of fibroblasts into myofibroblasts requires both a mechanical signal and transforming growth factor-ß (TGF-ß) signaling. The cation channel transient receptor potential vanilloid 4 (TRPV4) is a critical mediator of myofibroblast transdifferentiation and in vivo fibrosis through its mechanosensitivity to extracellular matrix stiffness. Here, we showed that TRPV4 promoted the transdifferentiation of human and mouse lung fibroblasts through its interaction with phosphoinositide 3-kinase γ (PI3Kγ), forming nanomolar-affinity, intracellular TRPV4-PI3Kγ complexes. TGF-ß induced the recruitment of TRPV4-PI3Kγ complexes to the plasma membrane and increased the activities of both TRPV4 and PI3Kγ. Using gain- and loss-of-function approaches, we showed that both TRPV4 and PI3Kγ were required for myofibroblast transdifferentiation as assessed by the increased production of α-smooth muscle actin and its incorporation into stress fibers, cytoskeletal changes, collagen-1 production, and contractile force. Expression of various mutant forms of the PI3Kγ catalytic subunit (p110γ) in cells lacking PI3Kγ revealed that only the noncatalytic, amino-terminal domain of p110γ was necessary and sufficient for TGF-ß-induced TRPV4 plasma membrane recruitment and myofibroblast transdifferentiation. These data suggest that TGF-ß stimulates a noncanonical scaffolding action of PI3Kγ, which recruits TRPV4-PI3Kγ complexes to the plasma membrane, thereby increasing myofibroblast transdifferentiation. Given that both TRPV4 and PI3Kγ have pleiotropic actions, targeting the interaction between them could provide a specific therapeutic approach for inhibiting myofibroblast transdifferentiation.


Assuntos
Membrana Celular/metabolismo , Transdiferenciação Celular , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Miofibroblastos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Membrana Celular/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Canais de Cátion TRPV/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Pulm Pharmacol Ther ; 59: 101839, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518649

RESUMO

PURPOSE: Although safety and tolerability of approved antifibrotics has been reported extensively, little is known about their effects on weight. We analyzed predictors of weight change after one year of uninterrupted antifibrotic therapy in patients followed at our institution's interstitial lung disease clinic. METHODS/RESULTS: We identified 80 patients on antifibrotic therapy (44 pirfenidone/36 nintedanib) with at least one year of follow-up and no therapy interruptions. Thirty-five patients (44%) lost more than 5% of their baseline body weight, and 11 (19%) lost more than 10%. A higher proportion of patients on nintedanib experienced a clinically significant weight loss (>5%) versus pirfenidone (61% vs 30%, p = 0.005). Univariate and multivariate analyses identified nintedanib therapy and a higher composite physiologic index (CPI) as predictors of weight loss. CONCLUSIONS: Weight loss is common among IPF patients on antifibrotic therapy. Nintedanib therapy and more advanced disease were identified as predictors of weight loss in this population.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/administração & dosagem , Piridonas/administração & dosagem , Redução de Peso/efeitos dos fármacos , Idoso , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Indóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Piridonas/efeitos adversos , Índice de Gravidade de Doença
18.
Front Immunol ; 8: 503, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523001

RESUMO

Ion channels/pumps are essential regulators of organ homeostasis and disease. In the present review, we discuss the role of the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), in cytokine secretion and pulmonary inflammatory diseases such as asthma, cystic fibrosis (CF), and acute lung injury/acute respiratory distress syndrome (ARDS). TRPV4 has been shown to play a role in lung diseases associated with lung parenchymal stretch or stiffness. TRPV4 indirectly mediates hypotonicity-induced smooth muscle contraction and airway remodeling in asthma. Further, the literature suggests that in CF TRPV4 may improve ciliary beat frequency enhancing mucociliary clearance, while at the same time increasing pro-inflammatory cytokine secretion/lung tissue injury. Currently it is understood that the role of TRPV4 in immune cell function and associated lung tissue injury/ARDS may depend on the injury stimulus. Uncovering the downstream mechanisms of TRPV4 action in pulmonary inflammatory diseases is likely important to understanding disease pathogenesis and may lead to novel therapeutics.

20.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L941-L955, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27638903

RESUMO

We previously showed that coincident exposure to heat shock (HS; 42°C for 2 h) and TNF-α synergistically induces apoptosis in mouse lung epithelium. We extended this work by analyzing HS effects on human lung epithelial responses to clinically relevant injury. Cotreatment with TNF-α and HS induced little caspase-3 and poly(ADP-ribose) polymerase cleavage in human small airway epithelial cells, A549 cells, and BEAS2B cells. Scratch wound closure rates almost doubled when A549 and BEAS2B cells and air-liquid interface cultures of human bronchial epithelial cells were heat shocked immediately after wounding. Microarray, qRT-PCR, and immunoblotting showed fibroblast growth factor 1 (FGF1) to be synergistically induced by HS and wounding. Enhanced FGF1 expression in HS/wounded A549 was blocked by inhibitors of p38 MAPK (SB203580) or HS factor (HSF)-1 (KNK-437) and in HSF1 knockout BEAS2B cells. PCR demonstrated FGF1 to be expressed from the two most distal promoters in wounded/HS cells. Wound closure in HS A549 and BEAS2B cells was reduced by FGF receptor-1/3 inhibition (SU-5402) or FGF1 depletion. Exogenous FGF1 accelerated A549 wound closure in the absence but not presence of HS. In the presence of exogenous FGF1, HS slowed wound closure, suggesting that it increases FGF1 expression but impairs FGF1-stimulated wound closure. Frozen sections from normal and idiopathic pulmonary fibrosis (IPF) lung were analyzed for FGF1 and HSP70 by immunofluorescence confocal microscopy and qRT-PCR. FGF1 and HSP70 mRNA levels were 7.5- and 5.9-fold higher in IPF than normal lung, and the proteins colocalized to fibroblastic foci in IPF lung. We conclude that HS signaling may have an important impact on gene expression contributing to lung injury, healing, and fibrosis.


Assuntos
Epitélio/metabolismo , Epitélio/patologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Resposta ao Choque Térmico , Lesão Pulmonar/patologia , Animais , Apoptose/genética , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator 1 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Camundongos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...